
www.manaraa.com

C. Gennaro and P. J. B. King

Volume 16, No. 1 TRANSACTIONS 1

1. Introduction
Ever since the pioneering work of Scherr [1] in applying the ma-
chine repairman problem to analysing the performance of com-
puter time shared systems, queueing theory has been a tool of the
computer performance analyst. A queueing network is a collec-
tion of stations (or service centers) arranged in such a way that
customers proceed from one to another in order to fulfill their
service requirements. When applying queueing networks to com-
puter systems, the stations represent the various system resources
(e.g., CPUs, channels, disks, etc.), while the customers repre-
sent jobs in the system. Many queueing networks do not have
closed-form analytic solutions and cannot be evaluated other than
by Monte Carlo simulation. Simulations are expensive to per-
form, and the results which are calculated are only known to
fall within certain confidence intervals. Queueing analysts found
closed-form solutions for increasingly complex queueing net-
works through the 1960s, and in 1975 the discovery of the class
of separable or product-form queueing networks was announced
[2]. This class of networks represents the most complex queue-
ing networks that can be effectively evaluated numerically to-
day. Several algorithms exist to evaluate the performance of such
networks with complexities that depend linearly on the number
of customers and the number of stations in the network.

Numerical algorithms for evaluating these networks are now
widely known, but few parallel implementations are known.
This paper describes the design and implementation of a Mean
Value Analysis (MVA) algorithm on a distributed memory sys-
tem, using the MPI library for communication.

We start by describing previous related work. The MVA al-
gorithm is described, and its complexity is demonstrated. The
following section gives our approach to parallelisation. The
implementation is described next, followed by practical evalu-
ation of the code on some test problems. Finally, conclusions
are drawn and suggestions for further work are made.

2. Previous Work
Queueing networks in which customers circulate between ser-
vice centres have the potential to be extremely difficult to ana-
lyse because of the interdependency of the different service
centres. Jackson [3] showed that open networks with all ser-
vices exponentially distributed and Poisson arrivals could be
analysed as if the service centres were independent M/M/1
queues. Baskett et al. [2] were able to extend this analysis to a
more general framework, allowing non-exponential services in
some instances, and also different classes of customers with
their own routing behaviours. They showed the probability of
the network being in a state n = (n1, n2, ...,nM), when there
are M service centres, is of the form:

Pr(n) =
G

 ∏ fi (ni)

If the network is open, the factor G is 1, and the service cen-
tres are essentially independent of one another, only interacting
through the routing of customers to other centres after service.
When the network is closed, however, the factor G, which en-
sures that the probabilities are normalised, introduces a depen-
dency between the service centres. If the total customer popula-
tion is n, say, then the fact that centre 1, say, has five customers
present, implies that there can only be n – 5 to be distributed
around the other service centres. Obvious approaches to calcu-
lating G, for example, by summing over all possible states, soon
run into practical problems because of the number of states in-
volved, not to say numerical difficulties such as round-off.

Algorithms to numerically evaluate these networks have been
the subject of much interest. Buzen [4] developed the first algo-
rithm, known as the convolution algorithm. This algorithm finds
the normalisation constant G for a network of M centres and N
customers using a simple recurrence relating G(M, N) to G(M –
1, N) and G(M, N – 1). Other performance metrics, such as
mean queue lengths, centre utilisations, etc., are found using G.
Although very efficient, the convolution algorithm is not very
intuitive, and its computations can be affected by overflow or un-
derflow for large networks. Reiser and Lavenberg [5] developed

Parallelising the Mean Value Analysis Algorithm

Claudio Gennaro* and Peter J.B. King**

* Dipartimento di Elettronica e Informazione, Politecnico di Milano, Milano, Italy; E-mail:
gennaro@elet.polimi.it; ** Department of Computing and Electrical Engineering, Heriot-Watt University,
Edinburgh, United Kingdom; E-mail: pbjk@cee.hw.ac.uk

The Mean Value Analysis (MVA) algorithm is one of the most popular for evaluating the performance of separable
(or product-form) queueing networks. Although its complexity is modest when jobs are indistinguishable, the
introduction of different customer classes rapidly increases its computational cost. The problems of parallelising
the algorithm while retaining its conceptual simplicity are examined. In particular, a parallel implementation of
MVA on a distributed memory machine is developed using the MPI library for communication.

Keywords: Mean value analysis, queueing networks, product form, pipelined algorithm, parallel simulation

Received: January 1998; Revised: July 1998; Accepted: September 1998

TRANSACTIONS of The Society for Computer Simulation International
ISSN 0740-6797/99
Copyright © 1999 The Society for Computer Simulation International
Volume 16, Number 1, pp. 16-22

1
M

i=1

www.manaraa.com

March TRANSACTIONS 1999

2 TRANSACTIONS Volume 16, No. 1

a new algorithm, Mean Value Analysis (MVA), that uses only
meaningful metrics of network performance in its calculation.
Essentially, the performance of the network when N customers
are present is evaluated using the performance of the network
when there are N – 1 customers. Metrics such as utilisation and
mean queue length are produced as a side effect. The
normalisation constant is not calculated. MVA is of similar com-
plexity to convolution. Other algorithms such as LBANC and
CCNC [6] and RECAL [7] have also been developed. They all
have similar complexities, although in particular cases, one al-
gorithm or another may be favoured.

A major advance in speeding up these algorithms has been
the recognition of the tree structuring apparent when different
classes of customer only visit subsets of the service centres. It
is then possible to significantly simplify the calculations for
those stations which are not visited by particular classes of cus-
tomer. The full complexity of the algorithm needs to be applied
only to service centres where different classes of customer in-
teract. This simplification was originally discovered by Lam
and Lien [8] and applied to the convolution algorithm. It can
also be applied to MVA and RECAL.

Parallel implementations of a number of these algorithms
have been proposed. Greenberg and McKenna [9] developed a
parallel version of RECAL for use on shared memory multi-
processors. Pace and Tucci [10] worked with MVA. Greenberg
and Mitrani [11] have developed a technique using fast Fourier
transforms to evaluate the normalisation constant G in parallel.
Hanson et al. [12] also used MVA. Most of these algorithms
have been implemented or proposed for a shared memory envi-
ronment. It is a feature of all the algorithms that they build up
their solutions iteratively, either from the solutions of the same
network with smaller populations, or from solutions of a smaller
network with the same population. Shared memory means that
earlier results are easily available on all processors.

Our interest is in the development of an algorithm which is
effective in a distributed memory environment. Here each pro-

Figure 1. Example of the PMVA algorithm with two classes and two processors

cessor has its own storage, and data calculated on one proces-
sor is not available to other processors without explicit trans-
mission to the other processor’s memory. Inter-processor com-
munication needs to be minimised, because it will typically be
several orders of magnitude slower than computations.

3. MVA
Mean value analysis operates by relating the performance of
the network when n customers are present to the performance
when n – 1 are present. Since the performance when there are 0
customers is known trivially, calculations proceed using increas-
ing populations, from 0 to N. The evaluation of performance
for a particular population involves iteration over all stations in
the network. When the population is N, and there are M stations,
the complexity of the algorithm is O(MN).

If there are R classes of customer, then the performance when
the population vector is n = (n1, n2, ...,nR) is calculated us-
ing the performance at populations (n1 – 1, n2, ..., nR),
(nl, n2 –1, ...,nR), ..., (nl, n2, ...,nR – 1). Given a final popu-
lation for which we wish to calculate the performance, the cal-
culations needed give a precedence relationship between the
different populations. The population 0 precedes all other popu-
lations, and the other populations must be calculated. The order
of calculation is not totally determined, since the precedence
relationship is only a partial ordering.

4. The Algorithm
The aim of a parallel algorithm for MVA must be to calculate
the same results as a uni-processor MVA algorithm, while gain-
ing significant speedup by performing some of the calculation
in parallel. The precedence graph will put an upper bound on
the amount of parallelism that is possible.

We allocate a processor to be responsible for each popula-
tion. Each processor may be allocated more than one popula-
tion. As soon as the preceding populations have been calculated,

www.manaraa.com

C. Gennaro and P. J. B. King

Volume 16, No. 1 TRANSACTIONS 3

calculations can start. If the preceding populations were allocated
to different processors, then the performance vector must be trans-
mitted between the processors. If the preceding population was
calculated on the same processor, then no communication is
needed.

Even if an unbounded number of processors were available,
it would not be sensible to allocate only a single population to a
processor. The communications cost in that case would over-
whelm most of the speedup obtained by parallelism of the com-
putation. We anticipate that a modest number of processors will
achieve an almost linear speedup.

For simplicity, we allocate a population to a processor based
only on the population of the first class of customers. This is
easily implemented and gives a significant speedup. It might be
possible to run some form of processor allocation algorithm
which toured the precedence graph in order, allocating the popu-
lation to a particular processor depending on whether the pro-
cessor was already allocated, and on the identity of the processor
used for neighbouring populations in the graph.

4.1 The Implementation

Figure 1 shows the precedence graph of computation in the case
of queueing network with two customer classes (named A and B).
Class A has a population of 5 customers and class B, 3 custom-
ers. The node at coordinates (r, s) corresponds to the computa-
tion of the statistics (queue lengths, response times, etc.) when
in the network has r customers of class A and s customers of
class B. The calculation ends when the node at coordinates (5, 3)
has been evaluated.

In the case of a two-processor implementation, the nodes
are partitioned solely on the basis of the population of class A
customers. Processor 1 calculates those nodes that have class
populations from 0 to 2 inclusive, and processor 2 calculates
those with class A populations of 3 or more. In general, when
the final population is (m, n), processor 1 is allocated popula-
tions (i, j) for 0 ≤ i ≤ k and processor 2 is allocated k < i ≤ m,
where k = m/2. In Figure 1, k = 2, and processor 1 starts alone
and executes the computation at nodes (0, 0), (1, 0), ..., (k, 0),
in order. It then sends the results of node (k, 0) to processor 2,
which has been idle until this time. Processor 2 executes the
nodes from (k + 1, 0) to (m, 0), and simultaneously processor 1
executes the nodes from (0, 1) to (k, l). A pipeline is established
with processor 1 executing node (r, s) with 0 ≤ r ≤ k and si-
multaneously processor 2 computes the results for (t, s– 1)
with k + 1 ≤ t ≤ m. Eventually, processor 1 reaches node (k, n),
calculates the performance for that population and transmits it
to processor 2. Processor 1 is then idle while processor 2 works
on nodes (k + 1, n) ... (m, n). When processor 2 reaches the
node (m, n) and executes the corresponding computations, the
algorithm terminates.

When more processors are available, the nodes are still parti-
tioned between processors on the basis of their class 1 popula-
tion. If a total class population of m customers is to be calculated,
and there are p processors available, then each processor is as-
signed m/p values of class 1 population.

Networks with R classes of customer generate an R-dimen-
sional precedence graph. Although more complex processor

assignment algorithms would be possible, we have extended
the two-dimensional algorithm. The nodes are partitioned on
the basis of the population of class 1 customers. Processor 1
starts by evaluating the nodes for populations of class 1 from 0
to k, while all other classes have populations of 0. When popu-
lation k is reached, processor 2 starts with population k + 1.
Meanwhile, processor 1 has started the calculation of results
for a population of 1 in class 2, again taking the class 1 popula-
tion from 0 to k. When it reaches k, processor 2 should have
finished computations for class 1 populations up to m, and be
ready to calculate for population k + 1 again, but with a popu-
lation of 1 in class 2.

4.2 Performance Prediction of the Algorithm

Letting Ni be the population of class i for 1 ≤ i ≤ R, the execu-
tion time T(1) of the algorithm on a single processor is given
by:

T(1) = h(1) ∏ (Ni + 1)

where h(1) represents the mean time spent computing a node of
the MVA algorithm in the case of p = 1. Since the parallel ma-
chines exploit cache mechanisms during the computations, we
assume that h may depend on the number of processors. The
execution time T(p) with p > 1 is given by:

T(p) = TCalc(p) + TComm(p)

where TComm(p) is the time spent communicating and TCalc(p)
the time spent computing. The term TCalc(p) can be estimated
from the time to calculate one node, the number of processors,
and careful accounting for the periods when not all processors
are active. Each processor is responsible for a range of class 1
subscripts. Most processors deal with a range of size N1 + 1ll
subscripts. The processors that are responsible for a smaller
range will be idle for the processing of a single node. If we
assume that the calculation of a single node takes h(p), then the
first processor will take time h(p). N1 + 1 to calculate while
processor 2 is idle. It will then proceed to calculate for the re-
maining populations of class 2 through to class R. Hence pro-
cessor 1 will be busy for a time given by:

h(p)
N1 + 1

 ∏ (Ni + 1)

Before the computation is complete, the pipeline must empty.
This involves the remaining p – 1 processors each calculating
for a time of h(p) N1 + 1 . Adding these terms we get:

TCalc(p) = h(p)
N1 + 1

 ∏ (Ni + 1) + p – 1

This formula will be a slight overestimate if the processors
are not all responsible for the same number of subscripts. Divid-
ing them equally, if N1 + 1 is not exactly divisible by p, one
should give N1 + 1/p to processors 1, 2, 3, ..., k, and one fewer
subscripts to processors k + 1, ...,p. The correction term for the
pipeline emptying will be slightly smaller than that given above
when the later processors have fewer subscripts for which to
calculate.

R

i=1

(1)

(2)

p

p

p
R

i=2

R

i=2
p

p
(3)

www.manaraa.com

March TRANSACTIONS 1999

4 TRANSACTIONS Volume 16, No. 1

In a similar manner, the communication time can be derived,
assuming that all communications are synchronous.

TComm(p) = k(p) ∏ (Ni + 1) + p – 2

where k(p) represents the mean time spent communicating the
queue lengths of a node of the MVA algorithm from a proces-
sor to its successor in the pipeline when the number of proces-
sors is p1. Finally we can give the expression of the total time
T(p) by means the equations (2), (3) and (4):

T(p) = h(p)(N1 + 1) p ∏ (Ni + 1) +
p – 1

+ k(p) ∏ (Ni + 1) + p – 2

5. Experimental Results
The pipelined implementation described above has been imple-
mented on the Cray T3D machine at the Edinburgh Parallel
Computing Centre. The algorithm was restricted to the case of
load-independent service centres. This was only for implemen-
tation convenience, and does not represent a restriction on the
applicability of the method. The C programming language was
used, with all real values being expressed as double variables,
which occupy eight bytes. The MPI message-passing library was
used to provide interprocessor communications. Synchronous
communication was used, so that the sender of a message would
block until it had been successfully received.

5.1 The Case Study

The following parameters were chosen so that the program takes
about 30 minutes elapsed time when running on a single pro-
cessor:

• R = 3;

• M = 5;

• N1 = 4095, N2 = 177, N3 = 127.

where M is the number of service centers in the queueing net-
work.

5.2 Performance Obtained

The execution times2, the speedups and the relative efficiency
of the program with increasing number of processors are shown
in the Figures 2, 3 and 4, respectively3.

Figure 5 shows the average k(p) with p from 2 to 512. No-
tice the difference between k(2) and k(p) when p > 2. This is
due to the different behaviour of the pipeline and the use of syn-
chronous communications among the processors (see Figure 6).

Figure 2. Execution times of the Pipeline MVA
algorithm on Cray T3D machine

Figure 3. Speedup of the Pipeline MVA
algorithm on Cray T3D machine

Figure 4. Relative efficiency of the Pipeline
MVA algorithm on Cray T3D machine

1 Notice that k(p) includes the waiting time of the synchronous
communications.

2 Because the T3D machine doesn’t accept job running with only
one processor, the execution time for the case p = 1 is considered
to be equal to the time obtained with the program running on a two-
processor job with population of class 1 given by 2(N1 + 1) – 1,
without communications, and keeping one of two processors idle.

3 The execution times don’t include the I/O times for loading/writ-
ing the results of the MVA algorithm.

R

i=2
(4)

i=2R

i=2

p

(5)

1 R

www.manaraa.com

C. Gennaro and P. J. B. King

Volume 16, No. 1 TRANSACTIONS 5

Further when p > 2, the mean time communicating k(p) decreases
as the number of processors increases. This is because the rela-
tive amount of load imbalance decreases as the amount of work
distributed amongst more processors decreases. Suppose a pro-
cessor finishes a lot sooner than all the others; it will start to wait
until the receiver is ready to receive; hence, its communication
time will reflect this. As the amount of work is distributed, any
potential load imbalance will decrease in proportion; hence, it
will appear that the communication time is coming down.

5.3 Interpretation of the Results

Using Equation (1) and the experimental results, we can evalu-
ate the parameter h(1):

h(1) =
∏i=1 (Ni + 1)

 = 16.6µsec.

In order to evaluate h(p), when p > 1, we can exploit the mea-
sured time Ki(p), that is, the total time spent communicating
from the processor i. Since the measured time T(p) is in prac-
tice the execution time of p-th processor, we obtain:

h(p) = ∏i=1 (Ni + 1)
 = 16.6µsec. 4

Figure 7 shows the parameter h(p) obtained in this way. We ob-
serve that the computation time h(p) depends on the number of
processors. This effect is because of differing data being stored
in the high-speed memory cache.

5.4 Improving the Performance of the Program

The performance of the Pipeline MVA algorithm depends
strongly on the input problem. The speedup S(p) of the pro-
gram is given by dividing T(1) by T(p), that is:

h(p)(N1+1)(p∏ i=2(Ni+1)+
 p–1)+k(p)(∏ i=2(Ni+1)+p–2)

Dividing both numerator and denominator of (8) by k(p) and

supposing α(p) =
h(p) ≈ h(1)

 5 we obtain:

α(p)(N1+1)(p∏i=2(Ni+1)+
 p–1)+ ∏i=2(Ni+1)+p–2

When the effects of the pipeline delays are negligible, that is,
when ∏i=2(Ni + 1) >> p, Equation (9) becomes:

α(p)(N1 + 1)
α(p)

(N1 + 1) + 1

Then the relative efficiency e(p) = S(p)
 is:

α(p)(N1 + 1)

α(p)(N1 + 1) + p

Hence when α(p)(N1 + 1) >> p, we can obtain from the pro-
gram a relative efficiency near to 1.

Equation (11) implies that one should arrange the classes
such that class 1 has the largest population. This will ensure
that α(p)(N1 + 1) is as large as possible with respect to p. The

Figure 5. The k parameter of the Pipeline MVA
algorithm on Cray T3D machine

Figure 6. Behavior of the Pipeline MVA
algorithm with two and four processors

4 The time Ki(p) also includes the time spent waiting in the commu-
nication operations.

5 This is true when we can neglect the effect of the cache. In our
case study, this is true when p ≤ 256.

R

T(1)
(6)

p(T(p) – Kp(p))
R

(7)

(9)

k(p) k(p)

RR

Rα(p)∏i=1(Ni+1)

1
p

R

S(p)=
h(1)∏i=1(Ni+1)

R R1
p

(8)

S(p)=

R

p

S(p)=

p

e(p)=

(10)

(11)

www.manaraa.com

March TRANSACTIONS 1999

6 TRANSACTIONS Volume 16, No. 1

effect of the ordering of the other classes will be minimal, although
cache effects may give rise to small differences in performance.

Figure 8 shows the execution times when the same queue-
ing network is analysed, but with the classes presented in a dif-
ferent order. For instance, the case ABC means that class A
corresponds to the class with index i = 1 in the MVA algorithm,
class B with index i = 2, and so on. We see that the two cases
ABC and ACB have the best execution times, that is, when the
class with the largest population has index i = 1.

6. Memory Overhead
The memory requirements of the program are dominated by
the array of queue lengths. The amount of memory, expressed
in bytes, allocated to a processor is given by:

Df M
 ∏ (Ni + 1)

where Df is the number of bytes of float type in the machine
where the PMVA is running. This means that in some cases it

Figure 7. The h parameter of the Pipeline MVA
algorithm on Cray T3D machine

Figure 8. Execution time of the PMVA with different order of
classes in the algorithm; NA = 4095, NB = 127, NC = 63

could be necessary to increase the number of processors of the
algorithm just to make possible the running of the program. Some-
times it could be useful to change the order of classes in order to
minimize the the term ∏i=1 (Ni + 1) expressed in Equation (12).

For instance, in the T3D implementation we have 512 CPUs
each with 32Mb of memory available. Because Df = 8, from
Equation (12) we can say that if 6:

M ∏ (Ni + 1) >
512 × 32 × 1024 × 1024

 ≈ 2.147 × 109

the model cannot be solved with the PMVA running on the T3D.

7. Conclusion
We have demonstrated, both theoretically and experimentally,
that a parallel implementation of the MVA algorithm based upon
a simple partition of the population vectors to be evaluated pro-
duces a significant speedup, and is simple to implement and
analyse. It is possible that other algorithms to partition nodes
between processors might improve the performance of the al-
gorithm a little. It appears from our experimental results that
this would only be worthwhile when more than 64 processors
are available.

When the problem to be solved satisfies the condition
∏i=2 (Ni + 1) >> p, the pipeline imbalance is negligible, and
when α(p)(N1 + l) ≥ p we can obtain a relative efficiency
e(p) ≥ 0.5.

Further, we have shown that the cost of parallelisation with
the pipeline algorithm is small. More complex processor allo-
cation algorithms might obtain better performance, but at the
cost of increased complexity. Our results indicate that for fewer
than 64 processors, the simple allocation based on the subscript
of the most numerous class is adequate.

8. Acknowledgements
Claudio Gennaro was supported by a grant from the EPCC
TRACS scheme.

9. References
[1] Scherr, A.L. An Analysis of Time-Shared Computer Systems, MIT

Press, Cambridge, MA, 1967.

[2] Baskett, F., Chandy, K.M., Muntz, R.R., and Palacios-Gomez, F.
“Open, Closed and Mixed Networks of Queues with Different
Classes of Customers.” Journal of the ACM, Vol. 22, No. 2, pp
248-260, 1975.

[3] Jackson, J.R. “Jobshop-Like Queueing Systems.” Management
Science, Vol. 10, No. 1, pp 131-142, 1963.

[4] Buzen, J.P. “Computational Algorithms for Closed Queueing
Networks with Exponential Servers.” Communications of the
ACM, Vol. 16, No. 9, pp 527-531, September 1973.

[5] Reiser, M., Lavenberg, S.S. “Mean Value Analysis of Closed
Multichain Queueing Networks.” Journal of the ACM, Vol. 27,
No. 2, pp 313-322, 1980.

[6] Sauer, C.H. “Computational Algorithms for State-Dependent
Queueing Networks.” ACM Transactions on Computer Systems,
Vol. 1, No. 1, pp 67-92, 1983.

6 8 is the size in bytes of the C type double on the T3D.

p

R–1

i=1
Q(p)= (12)

R

R–1

R–1

i=1
8

(13)

www.manaraa.com

C. Gennaro and P. J. B. King

Volume 16, No. 1 TRANSACTIONS 7

[7] Conway, A.E., Georganas, N.D. “RECAL—A New Efficient
Algorithm for the Exact Analysis of Multiple-Chain Closed
Queueing Networks.” Journal of the ACM, Vol. 33, No. 4, pp
768-791, 1986.

[8] Lam, S.S., Lien. Y.L “A Tree Convolution Algorithm for the So-
lution of Queueing Networks.” Communications of the ACM,
Vol. 26, No. 3, pp 203-215, March 1983.

[9] Greenberg, A.G., McKenna, J. “Solution of Closed, Product Form,
Queueing Networks via the RECAL and Tree-RECAL Meth-
ods on a Shared Memory Multiprocessor.” Performance Evalu-
ation Review, Vol. 17, No. 1, pp 127-135, 1989.

[10] Pace, L., Tucci, S. “A Parallel Algorithm for Distributed Com-
puter Performance Evaluation Environments.” In Proceedings
of the 1990 Summer Computer Simulation Conference, pp 797-
802, 1990.

[11] Greenberg, A.G., Mitrani, I. “Massively Parallel Algorithms for
Network Partition Functions.” In International Conference on
Parallel Processing, Chicago, January 1991.

[12] Hanson, F.B., Mei, J.-D., Tier, C., Xu, H. “PDAC: A Data Paral-
lel Algorithm for the Performance Analysis of Closed Queue-
ing Networks.” Parallel Computing, Vol. 19, No. 12,
pp 1345-1358, 1993.

Claudio Gennaro received his degree in
Electronic Engineering from the University
of Pisa, Italy, in 1994. Presently he is a PhD
Student in Computer Engineering at
Politecnico di Milano, Italy. His current re-
search interests include performance evalu-
ation of computer systems, parallel and
distributed systems and optimizing and
parallelizing compiling techniques.

Peter King has a Mathematics Degree from
University College, London, and MSc and
PhD degrees in Computer Science from the
University of Newcastle-upon-Tyne. He has
been a lecturer in Computer Science at
Heriot-Watt University in Edinburgh since
1982. His main research interests are the
construction and evaluation of performance
models of computer systems and commu-
nication protocols. He is the Chairman of
the British Computer Society Performance
Engineering Specialist Group.

